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The problem of the motion of an autonomous two-degree-of-freedom Hamiltonian system in the neighbourhood of its equilibrium 
position is considered. It is assumed that the characteristic equation of the linearized system has a pair of pure imaginary roots. 
The roots of the other pair are assumed to be close to or equal to zero, and in the latter case non-simple elementary dividers 
correspond to these roots. The problem of the existence, bifurcations and orbital stability of families of periodic motions, generated 
from the equilibrium position, is solved. Conditionally periodic motions are analysed. The problem of the boundedness of the 
trajectories of the system in the neighbourhood of the equilibrium position in the case when it is Lyapunov unstable, is considered, 
Non-linear oscillations of an artificial satellite in the region of its steady rotation around the normal to the orbit plane are 
investigated as an application. © 1998 Elsevier Science Ltd. All rights reserved. 

1. F O R M U L A T I O N  OF T H E  P R O B L E M  

Suppose the motion of a two-degree-of-freedom system is described by the canonical equations 

dqj Idt =aHlSpj, dpj Idt =-aHlaqj ( j  = 1,2) (1.1) 

We will assume that the origin of coordinates qj = pj = 0 (j = 1, 2) of phase space is an equilibrium 
position, while the Hamilton function is independent of t and is analytic in a certain neighbourhood of 
the point qj = p~ = 0 (j = 1, 2). 

Suppose the characteristic equation of the linearized system (1.1) has a pair of pure imaginary roots 
_ iD (D > 0). We will assume that the roots of the other pair are close to zero and denote their moduli 
by el × I, where e is a small parameter (0 < e ,~ 1). If  the quantity × is equal to zero, we have exact 
resonance (one of the frequencies of small oscillations is equal to zero). In this case we assume that 
non-simple elementary dividers correspond to the zero roots of the characteristic equation. When 
× ~ 0 we have inexact resonance. 

If the resonance is exact, the variables qj and pj can be chosen, using a normalizing transformation 
(see [1]), so that in the expansion of the Hamilton function in series, terms higher than the second degree 
will depend only on q2 and combinations q] + p]. Below we will consider the case when there are no 
terms of the third degree in the normal form of the Hamilton function. This case is not unusual, since 
often, for example, the expansion of the Hamilton function in series contains no forms of odd powers 
of qj and pj. 

In the case of inexact resonance the normal form of the Hamilton function will contain the term V2exq z. 
We will assume that normalisation is carried out and, consequently, the Hamilton function in Eqs 

(1.1) has the following (normal) form 

H=~5,g l (q~  +p?)+~52p ~ +~Exq] + 

+ yq~ + ~8(q?  + p?)q~ + ~f f (q?  + p?)2 +0 ,  (1.2) 

In (1.2) the quantities 51 and 82 are equal to 1 or -1, y, 5 and ~ are constants, and 05 is a converging 
series, which begins with terms of no less than the fifth power in qj, pj (j = 1, 2). Everywhere henceforth 
we will assume that the coefficient y in normal form (1.2) is non-zero. 

As shown in [1J, in the case of exact resonance when the inequality 523' > 0 is satisfied, the equilibrium 
position qj = pj = 0(j = 1, 2) of system (1.1) is stable, and when 523' < 0 it is unstable. 

One of the aims of this paper is to solve the problem of the existence, bifurcations and orbital stability 
of the periodic motions which originate from an equilibrium position. Moreover, we investigate in detail 
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the nature of the non-linear oscillations in the neighbourhood of the equilibrium position both for exact 
and for inexact resonance. 

Note that Lyapunov's theorem on the holomorphic integral [2] is not applicable to the problem 
considered in this paper of periodic motions originating from an equilibrium position when there are 
small oscillations of zero frequency. Other resonance cases, when Lyapunov's theorem is inapplicable, 
but the characteristic equation has no zero roots, were investigated earlier (see, for example, [3-6], in 
which an extensive bibliography is given). 

2. A H I G H E R  H A M I L T O N I A N  T R A N S F O R M A T I O N .  P R E L I M I N A R Y  
A N A L Y S I S  OF  T H E  A P P R O X I M A T E  S Y S T E M  

If we drop terms higher than the fourth power in Hamilton function (1.2), the equations of motion will 
have an integral r = r~ where 2r = q2 + p~, ro >~ 0 is a constant. We will use the quantity r0 as the initial 
value of the variable r in the complete system of the equations of motion, when the terms of all powers 
are taken into account in the expansion of the Hamilton function in series, and we put r0 = el y I-IP0 . 

Instead of the variables qj, pj (j = 1, 2) we will introduce new canonically conjugate variables 9, ~g, 
~, 11 using a canonical transformation of the form 

q, =B 2 .~-;  sin qo, p, =.V/~ costp ( r  = r o + 3A I y I-'ap ) 
(2.1) 

q2 = ~ 2 e ~  I y l -~  ~, p2 =131yl-~ 1] 

The following Hamilton function corresponds to the equations of motion in the new variables 

H -- O'l~"~ ¥ + e~( l~  I] 2 + I/2 C¢2V2~ 2 + O'3~ 4) + O(E) (2.2) 

v2=IX I, (v>~0), X= ~ + 2 BI Y I-Ipo 

a l=Bi82 ,  t~2 = 82 sign x, ~3=~i2signy 

If we neglect quantities of the order of e and higher in Hamilton function (2.2), we arrive at an 
approximate system, which is a set of two oscillators: a linear oscillator with Hamiltonian Olf l~ and a 
non-linear one with Hamiltonian which is a set of terms of order e I/2 from (2.2). This Hamiltonian 
contains the constant P0 as a parameter. 

For a linear oscillator, using (2.1) we have ~(t) -= 0, cp(t) = olf~t + cp(0). The phase diagrams of the 
non-linear oscillator for the case when v = 0 are represented in the ~, rl plane in Fig. l(b) and (e), 
where o3 = i and 03 = -1, respectively. These diagrams, in particular, illustrate the stability and instability 
of the origin of coordinates qj = p = 0 (j = 1, 2) of initial system (1 1) for exact resonance when / 
82y > 0 and ~i2y < 0, respectively (here, in the expression for ×, we have × = 0, P0 = 0). 

Suppose now that v # 0. In this case it is convenient to change from the variables ~, V, ~, 1] to 
canonically conjugate variables wl, 11, q, p using the formulae 

=vq ,  11=v2p, ~ = v 3 1 t ,  ( p = w  I 

and also introduce the new time x = vt. 

a e f 

//A\ 
Fig. 1. 
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In the new variables we have 

H = fflf~l/i + e J 6 ( ~ p  2 +~t~2q 2 +a3q4)+  O(e) (fh = V-Ifi) (2.3) 

The Hamilton function of  the non-linear oscillator of the approximate system now has the form 

F = I~ IA ( ~  p2 + ~ o2q2 + 03q4) (2.4) 

while the corresponding equations of motion become 

dq/dx = ~ p ,  dp/dz = -E)~(o2q+403q 3) (2.5) 

Consider the equilibrium position q = qo, P = 0 of system (2.5). There is always an equilibrium position 
in which q0 = 0. This equilibrium is stable if 02 > 0 and unstable if 02 < 0. 

If 0203 < 0, then, in addition to the equilibrium q0 = 0, p = 0, there are two equilibrium in which 
p = 0 while q0 = 1/2 or -1/2. These equilibria are stable if 02 < 0 and unstable if 02 > 0. 

The phase diagrams of  system (2.5) are represented in Fig. l (a)-(f)  in the q, p plane. In Fig. l (a)  
and (b) the quantity o3 = 1, where 02 = 1 and -1, respectively. In Fig. l (d)  and (f) 03 = -1 while the 
value of 02 is again equal to 1 and -1  respectively. The centre-type singular points correspond to stable 
equilibria in Fig. l(a), (c), (d) and (f) while the saddle singular points correspond to unstable equilibria. 

3. F A M I L I E S  OF P E R I O D I C  M O T I O N S  

The periodic motions of the non-linear oscillator of the approximate system correspond to equilibrium 
positions. These periodic motions are described by the following formulae in the initial variables qj, pj 

q, = 5 2 I y 1-½ 2~/~0 sin 9, P, =1 ¥ I -)~ ~ cosg(q~ = oiD~ + 9(0)) (3.1) 

q2 =~i2 I~/I-~ v~-q0,  P2 = 0  

Here either q0 = 0 or (when o2a3 < 0) qo can take one of three values: 0, 1/2, -1/2. 
We will now consider the complete system with Hamilton function (2.3). We will assume that v # 0. 

We will show that single-parametric families of periodic motions, analytic in e 1/2, exist in the complete 
system, and approach motions (3.1) as e ---) 0. When 0203 > 0 there is a single family of periodic motions 
and when 0203 < 0 there are three. The constant of the energy integral or, which is the same thing, 
the quantity P0, serves as the parameter of the families. 

For the proof  we consider the isoenergy level H = c. = const. Taking expression (2.3) for H into 
account, and the fact that Ii(0) = 0, we expand the equation H = c. in 11 

I~ = - K  = -o f l~q  F + O(e) (3.2) 

where F is function (2.4). The terms in (3.2) that are independent ofq,  p and wl are dropped, and O(e) 
is a function that is 2n-periodic in wl and analytic in q, p and e. 

On the isoenergy level H = c, the equations have Hamilton form (the Whittaker equations [7]), and 
the function K from (3.2) plays the role of the Hamilton function, while the quantity Wl plays the role 
of the independent variable. These equations have the form 

| I dq / dw I = EY201~')I p +  O(e) 
(3.3) 

I I 
dp/dw I = -e½olf2~ - (a2q + 4o3q 3) + O(e) 

We will find a solution of system (3.3) that is 2~-periodic in Wl. We will seek it in the form of the 
series 

q=qo+e.~q°)+eq(2)+ .... p = e~p°)  + e.p(2) +... (3.4) 

Substituting the series into (3.3) and equating terms of like powers of d a2, we obtain differential 
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equations for the coefficients q(k), p(k). For q(1), p(1) we have the equations 

dq~l) / dwl =0, dpO) / dwj =0 

The general solution of these equations is qO) = c(1),p(1) = d(1). The constants c 0), d O) are determin- 
ed at the next step when finding the 2rt-periodic solution of the equations for q(2), p(2) 

dq~2) / dwl = t~l~'~I dO) + Q~2) ( wl ) (3.5) 

dpf2) i dw I = _t~l~-J (6 2 + 12t~3q02)c(t) + p(2)(w I ) 

where Q(2), p(2) are 2n-periodic functions not containing c 0), d (1). 
For the periodicity of q(2), p(2) it is necessary and sufficient to choose c (1), d (1) so that there are no 

constant terms in the expansions of the right-hand sides of Eqs (3.5) in Fourier series. The quantity 
62 + 1263q0 z from the right-hand side of the second of Eqs (3.5) is equal to 62 when qo = 0 and -2~  z 
when q0 = ± 1/2. Hence, in view of the assumption v ~ 0 and the notation from (2.2) it follows that 
this choice of c 0), d (1) is always possible. Hence, we obtain from (3.5) that q(2) = ff2) + c(Z), p(2) = g(Z) 
+ d (z), w h e r e f  (2) and g(2) are 21t-periodic in wl while c (2), d (2) are constants determined at the next step. 

The process can be continued. For sufficiently small e, series (3.4) converge [8] and are 2~-periodic 
functions of wl, containing P0 as the parameter. 

The dependence of w 1 on "c is found from the equation dwl/dX = ~H/3I 1 = (~1~"~1 + O(E). The period 
of the solutions with respect to t is equal to the time interval during which wl increases by 2n. It tends 
to 2~/f~ as e ~ 0. 

Periodic motions from these families, for which the singular saddle points in Fig. l(a)-(f)  correspond 
as e ~ 0 are orbitaUy unstable for fairly small e; this follows from the continuity of the characteristic expon- 
ents in e. As will follow from that is said below (see Section 4), periodic motions from the families to which 
centre-type singular points correspond as e ~ 0 in Fig. l(a)-(f)  for sufficiently small e, are orbitally stable. 

The conclusions reached give a clear picture of the bifurcations of the periodic motions in the 
neighbourhood of the origin of coordinates qj = pj = 0 (j = 1, 2) of initial system (1.1) as a function 
of the coefficients of the normalized Hamiltonian (1.2). 

We will first consider the case of exact resonance (× = 0). If 52Y > 0 (the origin of coordinates is 
stable), then, when ~25 > 0, a single family of periodic motions is produced from the origin of coordinates, 
which are orbitally stable; these motions depend on r0 as on the parameter and as r0 ~ 0 transfer into 
an equilibrium position qj =p j  --- 0 (j = 1, 2) (Fig. la). If82y > 0, while 525 < 0, three families of periodic 
motions are produced from the origin of coordinates: one is orbitally unstable while two are orbitally 
stable: these families "collapse" into the origin of coordinates when r 0 ~ 0 (Fig. c). 

If ~2Y < 0 (the origin of coordinates is unstable), while 525 > 0, three families of  periodic motions 
are also generated from the origin of coordinates, but now one is orbitally stable while two are unstable 
(Fig. ld). If, when 62~t < 0 we have ~ 5  < 0, one family of orbitally unstable periodic motions is produced 
from the unstable origin of coordinates (Fig. lf). 

Suppose now that the resonance is not exact (× # 0). A clear representation of the families of periodic 
motions, generated from the origin of coordinates q: = pj = 0 (j = 1, 2), can again be obtained from 
Fig. l(a)-(f) .  When 52~/> 0 Fig. l (a)  will be the illustration (the case 52Z < 0, when a single family of 
orbitally stable motions is generated), and Fig. l(c) (the case 52Z < 0, when a single family of  unstable 
motions and two families of stable motions are generated). The evolution of the bifurcation pattern 
when Po changes in the case of equal signs of the quantities × and 5 is of interest. Suppose, for example, 
~2 > 0 while × < 0, ~5 > 0. Then, the orbitally stable family of periodic motions, uniquely generated 
from the origin of coordinates qj = p / =  0 (j = 1, 2) loses stability as P0 increases, and at the instant 
when stability is lost (when Po = ×1 Y I 1 25 1 -l) two orbitally stable families branch off from it (Fig. la  
changes into Fig. lc). If 52 > 0 while × < 0, 5 < 0, then, conversely, as Po increases the unstable family 
of periodic motions become stable, while the two stable families disappear (Fig. lc  becomes Fig. la). 
The case 52 < 0 can be considered similarly. 

The case ~ / <  0 is illustrated in Fig. l (d)  (52Z > 0; three families of periodic motions are generated: 
one is stable and two are unstable) and Fig. l(f) (~2Z < 0; one unstable family is generated). Here, in 
the case of different signs on the quantities × and & such an evolution of the bifurcation pattern will 
occur as Po changes: when 52 > 0, × > 0, 5 < 0 the unstable families will disappear as Po increases, 
while the unstable families will become stable (Fig. ld becomes Fig. lf); when ~2 > 0 and × > 0, 6 > 
0 the pattern is the opposite: the unstable family becomes stable and two unstable families branch off 
from it (Fig. I f  becomes Fig. ld). The case 52 < 0 is considered similarly. 
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4. C O N D I T I O N A L L Y  P E R I O D I C  M O T I O N S  

We will consider in more detail the nature of the non-linear oscillations in the neighbourhood of an 
equilibrium position qj = pj = 0 (j = 1, 2) of system (1.1). Confining ourselves to the case when 
v ,  0, we will investigate the transformed equations of motion with Hamilton function (2.3). 

We will first consider the approximate system. In this Ii(x) - 0, and the variables q a n d p  satisfy Eqs 
(2.5). These equations have the in tegra l f  = h = const, where F is function (2.4). The phase patterns 
are shown in Fig. l(a)-(f).  Below we consider four cases, when there are regions on the phase patterns 
filled with closed trajectories. The standard notation is used: k is the modulus of the elliptic functions 
and integrals, and K and E are the complete elliptic integrals of the first and second kind, respectively. 
For convenience we will also introduce the following notation 

h = ~ a l l 6 ,  b= I~--~, c= I~['[~-a, e = ( b - l ) ~ 1 2  

q = ( 1 - b ) ~ 1 2 ,  c2=(1+b)~12,  e l = ( 1 - c ) ~ 1 2 ,  e2=(1+c)~12  

1. The case tr~ = 1, tr2 = 1 (Fig. la). Here a I> 0. When a = 0 we have the equilibrium q = p = 0 of 
system (2.5). The case a > 0 corresponds to oscillations in the neighbourhood of this equilibrium. Here 
--e ~< q(z) ~< e. If we assume that q(0) = --e, we have 

q=-ecn(~r~x ,k ) ,  k 2 = ( 1 - b - J ) / 2  

The oscillation frequency (with respect to x) is calculated from formula to = ~(eb)K-1/2. 
When a > 0, we can introduce the "action-angle" variables 12 and w2 [9]. Calculations show that 

/2(a) = (6r¢)-' b~[(b + I)K - 2E] (4.1) 

Inverting the function (4.1), taking the above notation for a and b into account, we obtain 
h(I2) = el/2H(1)(I2), where to = el/23HO)/OI2. In a small neighbourhood of the point q = p = 0 (where 
0 < a ,g 1) the following expansions hold 

3 2 
to= e~(I +---3 a+ ' " ) ' 16  h = e ~ ( 1 2 + 2  1~ +"') 

Everywhere in the region of oscillations (a > 0) the function h(I2) satisfies the non-degeneracy 
condition d2h/dI 2 , O. In fact, calculations show that 

d2H (0 6n312 
> o 

Hence, the non-degeneracy of h follows from the equality h = eV2H 0). 

2. The case when tr3 = L tr2 = -1, -1 < a < 0 (the region of  oscillations in Fig. lc). When 03 = 1, 
t~ z = -1 the quantity a satisfies the inequality a / >  -1. If  a = -1, we have the equilibrium q = 1/2, 
p = 0 o rq  = -1/2,p = 0. When -1 < a < 0 oscillations occur in the neighbourhood of these equilibria. 
We will consider them in more detail, confining ourselves, for example, to the ease of  oscillations in 
the neighbourhood of the equilibrium q = 1/2, p = 0. Then Cl ~< q(x) <~ c2, where 

q = c2 dn(-~~c2'Lk), k 2 = 2b(1 +b) -1 

The oscillation frequency to = n~l(2e)c2K -1. The action variable is calculated from the formula 

t 2 = "q~(6~)-I C2 (E  - 4c? K) 

In a small neighbourhood of the equilibrium we have 

), ÷ ) 

Everywhere in the region -1 < a < 0 the function h(I2) = el/2/-/(1)(I2) satisfies the non-degeneracy 
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condition, since 

d2H(l) 6"~n3c212 < 0 

el2 = -  c2(a+ l )K 3 

The case a = 0 corresponds either to the equilibrium q = p = 0 or to trajectories doubly asymptotic 
to it---separatrices which, in Fig. l(c), distinguish regions of oscillations in the neighbourhood of the equili- 
bria q = ± 1/2, p = 0 from regions of rotation, in which the trajectories encompass all three equilibria. 
In the region of oscillations, the frequency co decreases as one approaches the separatrice, and in suffi- 
cient proximity to the separatrice, where 0 < -a  ~ 1, co - -2roe "1/2 ln-l(-a).  

3. The case cr 3 = 1, or2 = -1, a > 0 (the region o f  rotations in Fig. lc) .  Here 

q = -c  2 cn(-f-~x,k), k 2 = ~(1 +b  -I) 

co = gqr-~(2K)-I, 12 = (3~) -lb ~(2e2K + E) 

d2H 0) 6~312 

In the region of the separatrice, where 0 < a ~ 1, we have co - -  - / E  1/2 ln-la. 

4. The case cr 3 = -1, or2 = 1, 0 < a < 1 (the region o f  oscillations in Fig. ld ) .  When °3 = -1, (~2 = 1 
and a = 0 we have the equilibrium q = p = 0, and when a = 1 either the equilibrium q = ± 1/2, p = 0 
or a doubly asymptotic trajectory connecting them--a  separatrice. When 0 < a ~< 1 we have a region 
of oscillations in the neighbourhood of the equilibrium q = p = 0. In the region of oscillations 

q = e l s n ( . ~ e 2 x , , k ) ,  k 2 = ( l - c ) ( l + c )  -I 

= 7t.x~e2 (2 K) -I , 12 = (3x) -1-42ez(E - cK) 

d2H¢l-------~) 3%/2/~3e212 < 0 
dt~ = 4 e 2 ( I - a ) K  3 

In the region of the equilibrium q = p = 0 the following expansions hold 

co=E ~ I---a+16 "'" ' h = £ ~  1 2 - 2  "'" 

while in the region of the separatrice co ~ -n~/(2e) ln-l(1 - a). 
We will now consider the complete system with Hamilton function (2.3). For each of the four cases 

considered in "action-angle" variables I1, 12, wl, w2, we have 

H =  H(° ) ( I I )+ I~H(1) (12)+F.H(2) ( I I ,12 ,w l ,w2; I~ ) ,  H (°) =Oif~ll~ (4.2) 

The function/r_/(1) (12) in each of cases 1-4 is defined above. In the regions of oscillations and rotations 
considered the function (4.2) is 2n-periodic in Wl and w2 and analytic with respect to its arguments. 
Here, we have the case of natural degeneracy [10], since when e = 0 Hamilton function (4.2) depends 
on only one of the action variables. 

As follows from the above results, Hamiltonian (4.2) satisfies the conditions 

aH (o) aH (j) o')2H(D 

a/--7- al--T ~ 0  

Hence it follows from [10, 11] that in the complete system (in the regions considered in cases 1-4) 
the motion for the majority of the initial conditions will be conditionally periodic with frequencies (with 
respect to t) f l  and v, co; only a fraction O(exp(---dl£-l/2)), d 1 > 0 - const of phase space is not filled 
with conditionally periodic trajectories. 

In this case, for all the initial conditions, the values of Ij(t) (j = 1, 2) in the complete system for all 
1/2 t are close to their initial values: I/j(t) - / j(0)l  <d2e (d2 = const). 
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Hence ,  follows, in part icular ,  the orbi ta l  stability of  the per iodic  mot ions  f rom the families,  to which 
as e ---> 0 cen t re - type  s ingular  points  in Fig. l ( a ) - ( f )  co r respond  (see Sect ion 3). 

5. N O T E  

Suppose  we have  exact  resonance ,  i.e. in (1.2) × is equal  to zero.  T h e n  [1] when  the inequali ty 
627 < 0 is satisfied the equi l ibr ium qj = p j  = 0 (j  = 1, 2) of  system (1.1) is unstable.  It  turns out,  however ,  
that  if the coefficient  7 and 8 of  the no rma l  fo rm of  the Hami l t on  funct ion (1.2) have  oppos i te  signs, 
then, despi te  the  instabili ty when  827 < 0 of  the equi l ibr ium qj = pj  = 0 (j  = 1, 2) o f  system (1.1), its 
t rajectories,  beginning fairly close to the equi l ibr ium and such that  r0 ;~ 0, for  all t m a y  r ema in  in as 
small  a ne ighbou rhood  o f  the equi l ibr ium as desired. 

In fact, the case x = 0, 527 < 0, 78 < 0 is i l lustrated in Figs l (d )  and (e), where  r0 # 0 and r0 = 0, 
respectively. It  follows f rom the results  of  the previous  sect ion that  if 627 < 0 and 76 < 0 (i.e. 
o3 = -1 ,  t~2 = 1) and at the initial instant  t = 0 we have q~(0) + p2(0)  = 2r0 # 0 (0 < r0 ~ 1), then  
for  all t > 0 the value o f  r is close to r 0 while qE(t) and p2(t) are as close as des i red  to the origin 
of  coord ina tes  if the quant i t ies  I q2(0) I, I p2(0) I are sufficiently small. M o r e  exactly, the inequali t ies  
I qz(t) I < 18/(27) 11/2 ro u2, IPe(t) I<[ 6/(27) l-V2 r0 will be  satisfied for  all t > 0. These  inequal i t ies  follow 
f rom the es t imates  of  the d imens ions  of  the region of  oscillations in Fig. l (d) .  

To illustrate the above, consider the following model example. Suppose a heavy point mass moves over a fixed 
absolutely smooth surface, which differs only slightly from a cylindrical surface with a horizontal generatrix. We 
will choose the scale so that the point mass, the acceleration due to gravity and the non-zero curvature of the surface 
at the equilibrium position of the point are equal to unity. We will refer the motion to a fixed system of coordinates 
xyz, the z axis of which is directed vertically upward. We will specify the surface by the equation 

z(x, y) = I/2 x 2 + x2y 2 - y4 

The equations of motion of the point can be written in the form 

- ~ + ( Z + I ) z x  = 0 ,  j ~ + ( Z + I ) Z y  = 0  

The origin of coordinates x = y = 0 is an equilibrium, and this equilibrium is unstable. In fact, one can verify that 
the equations of motion allow of particular solutions for which x(t) -=- O, whiley(t) satisfies the differential equation 

(I + 16y 6 )j) + 48ySj, 2 - 4y 3 = 0 (5.1) 

These particular solutions describe the motion of a point mass in the vertical planeyz along an absolutely smooth 
curve z = _y4. For all the solutions of Eq. (5.1), apart from y(t) --- 0 we have [Y(O I ~ oo ift  --4 oo. Hence, it follows 
that the equilibrium x = y = 0 is unstable. 

However, the point mass for all t can remain in a small neighbourhood of the equilibrium x = y = 0, if its motion 
begins fairly close to the origin of coordinates with a small initial velocity, where x2(0) + x2(0) ~ 0. 

In order to show that this assertion is true, we will obtain the normal form of the Hamilton function. Introducing 
the generalized momenta Px and py in the usual way, we obtain that in the neighbourhood of an equilibrium 

I 2 2 1 2 4 I 2 2 H=l/2(Px +py)+l/2x +x2y 2 - y  -I/2x px +06 

where 06 is a convergent series in powers of x, t, px andpy, which begins with a term no less than the sixth power. 
Exact resonance occurs, since one of the frequencies of the small oscillations is equal to zero. Here non-simple 

elementary dividers correspond to the corresponding zero roots of the characteristic equation. The quadratic part 
of the Hamilton function (6.3) has a normal form. Fourth-power terms can be normalized using univalent canonical 
replaclement of the variables x, y, Px, Py ~ ql, qz, Pl, P2, specified by the following generating function 

S = xp I + Yp2 + S4 

$4 = 1-~ (x3pl - 4x2yP2 + 8xy2 Pl - xP 3 - 4xPl p2 + 4yp2p2 ) 

We write the Hamilton function, normalized up to terms of the fourth power inclusive, in the form 

H = I/2(q2 +p2)+l/~2p2 _q4 +1/2(q2 +p2)q2 _1/16(q2 +p?)2 + 0  6 

Hence, in (1.2) we have 62 = 1, ), = -1, 6 = 1. Taking into account the form of the replacement of variables 
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x,y, px, pj, ~ ql, q2,pl,P2, it therefore follows that the above assertion regarding the limited nature of the motion 
of the point in the neighbourhood of its unstable equilibrium x = y = 0 is true. 

6. T H E  P E R I O D I C  M O T I O N S  OF AN A R T I F I C I A L  S A T E L L I T E  C L O S E  
TO ITS STEADY R O T A T I O N  

We will consider the motion of a dynamically symmetric artificial satellite--a rigid body--about  its 
centre of mass in a circular orbit. Suppose OXYZ is an orbital system of coordinates with origin at the 
centre of mass of the satellite (the O Z  axis is directed along the radius vector of the centre of mass, 
and O X  and O Y  are directed along the transversal and binormal to the orbit, respectively), while Oxyz 
is a system of coordinates, rigidly connected to the satellite, formed by the principal central axes of 
inertia (the Oz axis is directed along the axis of symmetry of the satellite). We will specify the orientation 
of the connected system of coordinates with respect to the orbital system using the Euler angles ¥, 0, 
9. We will denote the corresponding generalized momenta bypv, P0, P, .  

SupposeA and C are the equatorial and polar moments of inertia of the satellite while too is the average 
motion of the centre of mass in the orbit. The coordinate tO is cyclical, and hence p~ = CD. 0 = const, 
where D~ is the projection of the angular velocity of the satellite onto its axis of symmetry. 

We know [12], that for any D~ the equations of motion allow of the solution ~ = n, 0 = ~/2, 
P~, = P0 = 0. For this solution the axis of symmetry of the satellite is perpendicular to the orbit plane, 
while the satellite rotates around the axis of symmetry with an angular velocity Do. The solution of the 
problem of the stability of this steady rotation of the satellite depends on two dimensionless parameters 
a, f~, (oL = C/A, f~ = Odoo). 

This problem has been investigated in detail (see [12-14] and the bibliography given there). In parti- 
cular, stability along the curve al~ - 1 = 0 (when 2/3 < tx ~< 2) and along the curve o~1$ + 3tx - 4 = 0 
(when 0 < tx ~ 2) was investigated in [13]. These curves separate regions of stability and instability in 
the ~ I~ plane; for values of tx and [3 belonging to these curves, the characteristic equation of the linearized 
equations of perturbed motion has a pair of pure imaginary and a pair of zero roots, to which non- 
simple elementary dividers correspond. It was shown in [13] that on the curve ~t[3 - 1 = 0 
when 2/3 < tx < 1 steady rotation is unstable, while when 1 < o~ ~< 2 it is stable. On the curve 
a13 + 3or - 4 = 0 when 0 < tx < 1 and 4/3 < o~ ~ 2 there is stability, and when 1 < tx < 4/3 there is 
instability. 

Basing ourselves on the results obtained in Sections 2-4, we will consider the periodic motions of 
the axis of symmetry of the satellite in the neighbourhood of the normal to the orbit plane for values 
of the parameters tx and [~ lying on the above-mentioned boundaries of the stability regions or close to 
them. To do this we must obtain the normal form (1.2) of the Hamiltonian of the perturbed motion. 

If we introduce the perturbations Qj and Pj, by putting 

O = l t  l 2 + QI , q = / I ; + Q 2 ,  Po = A(OoPI, Pv = AC°oP2 

the Hamilton function of the perturbed motion can be written in the form of a series, in which there 
are no forms of odd powers in Qj, Pj (j = 1, 2). 

Suppose cx[~ - 1 = cA1, Ax = sign(cx[~ - 1). Then, as calculations show, in normal form (1.2) we 
have 

8 w =1, 6 2 =sign(a-I), f~=3a.~-'S2-2+O(e) 

× = 3 A l i a -  llf~-2 + O(e), T = 9 / 8 ( a - 1 ) 2 ~ - 4 + O ( E )  

8 = -27 / 482 (Or- I)2EU 5 + O(e) 

(6.1) 

If oq~ + 3or - 4 = EA2, A 2 = sign(tx[~ + 3tx - 4), the coefficients of normal form (1.2) will be 

81 = 1, 5 2 = -sign(or - 1), ~ = ~9ot 2 - 15tx + 7 + O(e) 

× = 3A 2 15 - I I L') -2 + O(E), y = 9 / 8(0~ - 1)2(4 - 3a)fU 4 + O(E) 

8 = 9 / 452 (ix - 1)2 (72o~2 _ I I I~ + 44)~ -5 + O(e) 

(6.2) 

Expressions (6.1) and (6.2), using the results obtained in Sections 2--4, give a detailed picture which 
describes the form of the non-linear oscillations of the axis of symmetry of the satellite close to the 
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normal to the orbit plane for values of the parameters ct, 13, lying in the neighbourhood of curves 
ct~ - 1 = 0 and (txl3 + 3tx - 4). For brevity we will only consider the case of exact resonance (i.e. when 
A1 = 0 and A2 = 0 in (6.1) and (6.2)). 

From curve tx]] - 1 - 0 and 2/3 < et < 1 (where the steady rotation is unstable) there is one family 
of orbitally unstable periodic motions with a period close to 2~/f~ (Fig. lf); if 1 < ot ~< 2 (when the 
steady rotation is stable), two families of orbitally stable periodic motions and one orbitally unstable 
motion exist (Fig. lc). 

On the curve tx~ + 3tx - 4 = 0 when 0 < ~ < 1 and 4/3 < ct ~< 2 (where the steady rotation is stable) 
there is one family of orbitally stable periodic motions (Fig. la). If 1 < tx < 4/3, there are two families 
of orbitally unstable periodic motions and one family of orbitally stable periodic motions (Fig. ld). 
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